Isolation and Characterization of Lactic Acid Bacteria for Use in the Development of Probiotics for Sheep Production in Kuwait

T. Al-Surrayai

Associate Research Scientist

Biotechnology Department Food resources and Biological Sciences Division Kuwait Institute for Scientific Research

Introduction

Mortality rate in the commercial farms:

* 12.2 % for adult sheep

* 32.4 % young lamb

Major cause of mortality are:

- 1. Enterotoxaemia,
- 2. diarrhea and
- 3. pasteurella pneumonia.

Diarrhea is still the most common and costly disease affecting ruminants.

E. Coli

rotavirus

The four major causes of diarrhea in ruminants during the first month of life

Salmonella sp

Cryposporidum sp

- Large quantities of antibiotics are fed to animals to control diseases.
- Antibiotics are killing all bacteria (harmful and useful) affecting the digestion of grain and nutrient absorption.
- *There is real danger that is producing antibiotic resistant bacteria that can cause disease in humans and animals.

What is probiotic?

- * A Probiotic is a living microbial feed supplement, which beneficially effect the host animal by improving its intestinal microbial balance" Fuller, 2004.
- Probiotics can replace the chemical growth promoters for farm animals and increase resistance to disease.
- * Commercial probiotic products typically contains Lactobacillus species, Bifidobacterium species and yeast.

Cattle Probiotics

The Fast growing demands for probiotics in production was due to:

- **1.The urgent need for safe and cost effective alternatives to antibiotic growth promoters.**
- 2.The stricter regulation controlling the use of antibiotics.
- **3.**The increase in cattle production due to the real need of meat consumption.

Claimed Benefits of Probiotics

- *****Increased growth rate and meat production.
- *Protection against infectious diseases due to stimulation of immunity.
- *****Reduction of mortality rate.
- ***Improved milk yield and quality.**
- ***Improved food utilization.**

Materials and Methods

- LAB Isolation and Enrichment
- Characterization and Identification of LAB.
- Determination of Antagonistic Activity of LAB Using In Vitro Tests .
- Determination of LAB Tolerance to Acidic pH
- Bacterial Adhesion to hydrocarbons.
- Quantitative Evaluation of Bacteriocin by Lactic Acid Bacteria against Salmonella enteritidis.

LAB Isolation and Enrichment

Sample Collection and Preparations.

Sample No	Code	Sample Source	Sample Description
1	A1	Rumen	Five- month old
2	A2	Abomasum	Five -month old
3	A3	Reticulum	Five -month old
4	A4	Duodenum	Five -month old
5	A4S	Duodenum	Five -month old
6	A5	Jejunum	Five -month old
7	A5S	Jejunum	Five -month old
8	A6	Caecum	Five -month old
9	A7	Rectum	Five -month old
10	B1	Rumen	One- year old
11	B2	Abomasum	One -year old
12	B3	Reticulum	One -year old
13	B6	Caecum	One -year old
14	B7	Rectum	One -year old
15	EM	ewe Milk	One -week ewe breed
16	F	Feces	five -month sheep

Results and Discussion

• Characterization and Identification of LAB

Sample No	Code	Shape	Gram Stain	Bacterial ID	16S rRNA Sequence I.D.
1	A5	Oval Shape	G +ve	Lactobacillus acidophilus	Enterococcus faecium
2	A5S	Oval Shape	G +ve	Lactobacillus brevis	Pedicoccus pentosaceus
3	A7	Rodo Cocci	G +ve	Lactobacillus salivarius	Pediococcus pentosaceus
4	ΕM	Oval Shape	G +ve	Lactobacillus plantarum	Enterococcus faecium

Antagonistic Activity of LAB Using *In Vitro* Tests:

. Isolated salmonella strains was *Salmonella enterica*.

. Clear zone < 1 mm scored as positive.

Sample No	Code	Bacterial ID	Salmonella enteritidis	Salmonella enterica	E. coli
1	A5	Enterococcus faecium	1	1	0
2	A7	Pediococcus pentosaceus	1.5	2	1

LAB Tolerance to Acidic pH

pH Value	Incubation Time in hrs							
	Enterococcus faecium				Pedicoccus pentosaceus			
	Ohr	1hr	2 hrs	4 hrs	Ohr	1hr	2 hrs	4 hrs
рН 0.5	OG	0	0	0	OG	12	0	0
pH 1	OG	25	16	0	OG	OG	OG	125
pH 2	OG	363	OG	OG	OG	OG	OG	OG
pH 3	OG	OG	OG	OG	OG	OG	OG	OG

Bacterial Adhesion to hydrocarbons

Bacterial ID	A0	Α	Percentage
Enterococcus faecium	0.834	0.212	74.5%
Pedicoccus pentosaceus	0.842	0.820	2.61 %

Discussion and Conclusion

In this study, two active strains were isolated *Enterococcus faecium* and *Pedicoccus pentosaceus*. This strain can strongly inhibit the growth of some effective pathogen (*Salmonella* spp *and E. coli*). At the same time they can tolerate low pH that similar to the condition in the animal stomach.

THANKS

